6834 measured reflections

 $R_{\rm int} = 0.016$

2436 independent reflections 1970 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-Boranyl-N-(trimethylsilyl)pyrrolidine

Deogratius Jaganyi, Udhir Chathuri and Orde Q. Munro*

School of Chemistry, University of KwaZulu-Natal, Peitermaritzburg, Private Bag X01, Scottsville 3209, South Africa Correspondence e-mail: munroo@ukzn.ac.za

Received 3 April 2007: accepted 18 April 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.090; data-to-parameter ratio = 14.2.

The molecule of the title compound, C7H20BNSi, exhibits normal sp³-hybridized B and N centres and the pyrrolidine ring has a slightly distorted envelope conformation. The B-N bond distance is longer than that found for related derivatives and possibly reflects the conformation of the ring and the effect of N-atom silvlation.

Related literature

For related literature, see: Jaska et al. (2003); Mountford et al. (2003); Chitsaz et al. (2002).

Experimental

Crystal data

C7H20BNSi
$M_r = 157.14$
Monoclinic, $P2_1/n$
a = 8.613 (5) Å
b = 10.321 (5) Å
c = 11.753 (5) Å
$\beta = 106.080 \ (5)^{\circ}$

V = 1003.9 (9) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.17 \text{ mm}^{-1}$ T = 100 (2) K $0.4 \times 0.3 \times 0.2 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur2 CCD	
diffractometer	
Absorption correction: multi-scan	
(Blessing, 1995)	
$T_{\min} = 0.934, T_{\max} = 0.971$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	171 parameters
$wR(F^2) = 0.090$	All H-atom parameters refined
S = 1.06	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
2436 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Selected torsion angles (°).

N-C1-C2-C3	20.37 (11)	C3-C4-N-C1	41.07 (11)
C1-C2-C3-C4	4.88 (11)	C2-C1-N-C4	-37.80 (11)
C2-C3-C4-N	-28.50(11)		

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX.

We gratefully acknowledge financial support from the University of KwaZulu-Natal and the National Research Foundation (NRF, Pretoria). Any opinion, findings and conclusions or recommendations expressed in this paper are those of the authors and therefore the NRF does not accept any liability in regard thereto. We thank Mr C. Grimmer for the NMR analysis of the samples.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2228).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Chitsaz, S., Breyhan, T., Pauls, J. & Neumuller, B. (2002). Z. Anorg. Allg. Chem. 628, 956-964.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Jaska, C. A., Temple, K., Lough, A. J. & Manners, I. (2003). J. Am. Chem. Soc. 125. 9424-9434
- Mountford, A. J., Hughes, D. L. & Lancaster, S. J. (2003). Chem. Commun. pp. 2148-2149.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.9. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o2689 [doi:10.1107/S1600536807019344]

N-Boranyl-N-(trimethylsilyl)pyrrolidine

D. Jaganyi, U. Chathuri and O. Q. Munro

Comment

As part of a broader study aimed at using various borane derivatives as hydroborating agents for octenes, we have recently begun to explore the use of activated amine adducts of BH₃. Our goal in this work was to prepare and structurally characterize a relatively stable silylated secondary amine adduct of BH₃ as a potentially active hydroborating reagent for alkenes.

The molecular structure of (I), (Fig. 1), reflects sp³ hybridized geometries for boron and nitrogen, consistent with the formation of a regular dative covalent bond to boron. Viewing (I) down the N–Si bond vector shows that the B–N bond roughly bisects the C5–Si–C7 angle to give a staggered conformation around the Si–N bond [C7–Si–N–B = 69 (1)°]. The BH₃ group therefore fits within the space generated by the closest two methyls of the SiMe₃ group.

The B–N bond of (I) (Table 1) is significantly longer than that of $B(C_6F_5)_3$.(pyrrolidine) [1.628 Å; Mountford *et al.*, 2003], (pyrrolidine)₂(BH₂)₂ [1.596 Å; Jaska *et al.*, 2003] and BH₃.(pyrrolidine) (1.591 Å; Chitsaz *et al.*, 2002). The origin of this effect is unclear, since the present structure exhibits no repulsive (short) B…Si steric interactions that might favour marked elongation of the B–N bond. Indeed the B–N–Si bond angle [108.8 (1)°] is close to the ideal sp³ hybridized value of 109.5°.

It is possible that silylation of the pyrrolidine nitrogen in (I) reduces its σ -donor power, culminating in a weaker, longer N–B bond. Also relevant is the fact that the pyrrolidine ring of (I) adopts a slightly distorted envelope conformation, with N as the flap atom; N is displaced by 0.602 (3) Å from the mean plane of the other four atoms. The ring carbon atoms C2 and C3 tip towards the BH₃ unit leading to a short intramolecular contact between H3B and B [3.02 (1) Å]. It has also a pseudo mirror plane passing through atom N and the mid-point of C2—C3 bond, as evidenced by the torsion angles (Table 1). This conformation is not observed for the pyrrolidine adduct of BH₃ where the envelope conformation of the pyrrolidine ring is folded away from the BH₃ group, presumably due to the absence of the bulky SiMe₃ group.

There are no short intermolecular contacts between molecules of (I) in the crystal lattice and the 4-molecule unit cell (Fig. 2) shows the expected packing.

Experimental

 B_2H_6 (b.p. 181 K) was generated by the reaction of $BF_3(OEt_2)$ (51.6 mmol, 6.53 ml) and $NaBH_4$ (1.46 g, 38.7 mmol) in bis(2-methoxyethyl) ether (20 ml) under nitrogen prior to being condensed at 166 K (liquid nitrogen/*iso*-octane slurrey). The liquid B_2H_6 was reacted with a solution of *N*-(trimethylsilyl)pyrrolidine (17.2 mmol, 3.0 ml) in hexane. Colorless crystals of (I) were obtained after 5 d.

Refinement

H atoms were located in difference syntheses and refined isotropically [C—H = 0.893 (15)-1.010 (12) Å, B—H = 1.104 (14)-1.121 (13) Å and $U_{iso}(H) = 0.013$ (3)-0.051 (5) Å²].

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.

Fig. 2. (a) A packing diagram for (I). H atoms have been omitted for clarity. (b) CPK model of the unit cell contents of (I) including H atoms.

N-Boranyl-N-(trimethylsilyl)pyrrolidine

Crystal data $C_7H_{20}BNSi$ $M_r = 157.14$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.613 (5) Å b = 10.321 (5) Å c = 11.753 (5) Å $\beta = 106.080$ (5)°

 $F_{000} = 352$ $D_x = 1.04 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4177 reflections $\theta = 3.8-33.9^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 100 (2) KBlock, colorless $V = 1003.9 (9) \text{ Å}^3$ Z = 4

0.4×0.3	$\times 0.2 \text{ mm}$
------------------	-------------------------

Data collection

Oxford Diffraction Xcalibur2 CCD diffractometer	2436 independent reflections
Radiation source: fine-focus sealed tube	1970 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.016$
Detector resolution: 8.4190 pixels mm ⁻¹	$\theta_{\text{max}} = 33.9^{\circ}$
ω scans	$\theta_{\min} = 4.0^{\circ}$
Absorption correction: multi-scan (Blessing, 1995)	$h = -10 \rightarrow 13$
$T_{\min} = 0.934, \ T_{\max} = 0.971$	$k = -12 \rightarrow 13$
6834 measured reflections	$l = -12 \rightarrow 15$

Refinement

 Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0589P)^2]$

 where $P = (F_o^2 + 2F_c^2)/3$

 Least-squares matrix: full
 $(\Delta/\sigma)_{max} = 0.001$
 $R[F^2 > 2\sigma(F^2)] = 0.031$ $\Delta\rho_{max} = 0.39 \text{ e Å}^{-3}$
 $wR(F^2) = 0.090$ $\Delta\rho_{min} = -0.21 \text{ e Å}^{-3}$

 S = 1.06 Extinction correction: none

 2436 reflections
 $\Delta P_{max} = 0.01 \text{ e A}^{-3}$

Special details

171 parameters

All H-atom parameters refined

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacemen	t par	ameters ($(Å^2)$
	17	*/17	

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.85439 (13)	0.12797 (11)	0.34325 (10)	0.0169 (2)
C2	0.68293 (13)	0.15220 (11)	0.35366 (10)	0.0194 (3)
C3	0.66737 (13)	0.30030 (12)	0.36165 (10)	0.0194 (3)
C4	0.82484 (12)	0.35392 (11)	0.34436 (10)	0.0153 (2)
C5	1.24120 (13)	0.41217 (11)	0.40765 (11)	0.0198 (3)
C6	1.06149 (15)	0.29146 (14)	0.17331 (11)	0.0239 (3)
C7	1.24759 (15)	0.11565 (12)	0.36983 (13)	0.0257 (3)
В	1.00502 (16)	0.24707 (13)	0.53477 (12)	0.0185 (3)
Ν	0.94841 (11)	0.24928 (8)	0.38998 (8)	0.0124 (2)
Si	1.12767 (3)	0.26715 (3)	0.33653 (3)	0.01435 (12)

supplementary materials

H1A	0.9113 (13)	0.0563 (12)	0.3895 (10)	0.021 (3)*
H1B	0.8533 (14)	0.1164 (13)	0.2613 (11)	0.023 (3)*
H2A	0.6659 (14)	0.1066 (13)	0.4225 (10)	0.024 (3)*
H2B	0.6058 (14)	0.1173 (12)	0.2842 (10)	0.021 (3)*
H3A	0.5724 (14)	0.3351 (12)	0.2980 (11)	0.022 (3)*
H3B	0.6545 (15)	0.3236 (13)	0.4371 (12)	0.028 (3)*
H4A	0.8639 (13)	0.4323 (12)	0.3881 (10)	0.017 (3)*
H4B	0.8130 (13)	0.3645 (11)	0.2611 (10)	0.013 (3)*
H5A	1.1743 (16)	0.4884 (14)	0.3951 (12)	0.037 (4)*
H5B	1.2849 (14)	0.3980 (12)	0.4911 (11)	0.023 (3)*
H5C	1.3241 (16)	0.4273 (13)	0.3727 (11)	0.033 (4)*
H6A	0.9977 (19)	0.2279 (14)	0.1352 (13)	0.042 (5)*
H6B	1.1574 (19)	0.2906 (14)	0.1439 (14)	0.041 (4)*
H6C	1.0107 (16)	0.3754 (17)	0.1528 (11)	0.046 (4)*
H7A	1.3255 (19)	0.1171 (15)	0.3272 (12)	0.051 (4)*
H7B	1.2976 (18)	0.1068 (15)	0.4542 (14)	0.051 (5)*
H7C	1.1859 (17)	0.0430 (16)	0.3421 (12)	0.047 (4)*
H8A	0.9040 (16)	0.2120 (13)	0.5674 (12)	0.033 (4)*
H8B	1.0372 (15)	0.3472 (13)	0.5678 (10)	0.030 (4)*
H8C	1.1110 (16)	0.1800 (14)	0.5637 (11)	0.040 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0208 (5)	0.0125 (5)	0.0170 (6)	-0.0037 (4)	0.0045 (4)	-0.0025 (5)
C2	0.0176 (5)	0.0210 (6)	0.0194 (6)	-0.0059 (4)	0.0047 (5)	-0.0015 (5)
C3	0.0166 (5)	0.0226 (6)	0.0197 (6)	0.0008 (4)	0.0061 (5)	-0.0010 (5)
C4	0.0167 (5)	0.0131 (5)	0.0161 (5)	0.0031 (4)	0.0046 (4)	0.0012 (4)
C5	0.0172 (5)	0.0173 (6)	0.0248 (6)	-0.0016 (4)	0.0057 (5)	-0.0027 (5)
C6	0.0239 (6)	0.0307 (7)	0.0183 (6)	-0.0053 (5)	0.0080 (5)	-0.0028 (5)
C7	0.0218 (6)	0.0198 (6)	0.0342 (7)	0.0042 (5)	0.0054 (6)	-0.0068 (6)
В	0.0217 (6)	0.0198 (6)	0.0128 (6)	-0.0014 (5)	0.0027 (5)	0.0012 (5)
Ν	0.0144 (4)	0.0098 (4)	0.0125 (4)	0.0001 (3)	0.0029 (4)	-0.0002 (3)
Si	0.01368 (16)	0.01410 (18)	0.01535 (19)	0.00015 (10)	0.00415 (12)	-0.00203 (12)

Geometric parameters (Å, °)

C1—N	1.5095 (14)	С5—Н5В	0.959 (12)
C1—C2	1.5357 (17)	С5—Н5С	0.931 (14)
C1—H1A	0.967 (12)	C6—Si	1.8606 (15)
C1—H1B	0.968 (12)	С6—Н6А	0.893 (15)
C2—C3	1.5395 (18)	С6—Н6В	0.980 (16)
C2—H2A	0.982 (12)	С6—Н6С	0.971 (17)
C2—H2B	0.968 (12)	C7—Si	1.8551 (14)
C3—C4	1.5296 (16)	С7—Н7А	0.943 (16)
С3—НЗА	1.010 (12)	С7—Н7В	0.969 (15)
С3—Н3В	0.955 (13)	С7—Н7С	0.925 (16)
C4—N	1.5068 (14)	B—N	1.6354 (17)
C4—H4A	0.967 (12)	B—H8A	1.104 (14)

C4—H4B	0.961 (11)	B—H8B	1.112 (13)
C5—Si	1.8553 (13)	B—H8C	1.121 (13)
C5—H5A	0.962 (14)	N—Si	1.8303 (13)
N—C1—C2	105.47 (9)	Si—C6—H6A	112.9 (10)
N—C1—H1A	107.0 (7)	Si—C6—H6B	108.4 (9)
C2—C1—H1A	115.4 (7)	Н6А—С6—Н6В	106.2 (12)
N—C1—H1B	108.7 (8)	Si—C6—H6C	111.4 (8)
C2—C1—H1B	110.8 (7)	H6A—C6—H6C	111.1 (12)
H1A—C1—H1B	109.2 (10)	H6B—C6—H6C	106.7 (11)
C1—C2—C3	105.57 (8)	Si—C7—H7A	108.1 (10)
C1—C2—H2A	110.7 (7)	Si—C7—H7B	111.0 (9)
С3—С2—Н2А	113.0 (7)	H7A—C7—H7B	111.4 (13)
C1—C2—H2B	108.8 (7)	Si—C7—H7C	112.2 (9)
С3—С2—Н2В	111.7 (8)	H7A—C7—H7C	104.5 (12)
H2A—C2—H2B	107.0 (10)	H7B—C7—H7C	109.5 (12)
C4—C3—C2	104.82 (9)	N—B—H8A	109.2 (7)
С4—С3—НЗА	109.8 (7)	N—B—H8B	108.9 (6)
С2—С3—НЗА	112.0 (7)	H8A—B—H8B	109.1 (9)
C4—C3—H3B	111.6 (8)	N—B—H8C	107.9 (7)
С2—С3—Н3В	110.0 (8)	H8A—B—H8C	110.3 (10)
НЗА—СЗ—НЗВ	108.7 (10)	H8B—B—H8C	111.4 (9)
N—C4—C3	104.97 (9)	C4—N—C1	102.14 (9)
N—C4—H4A	107.6 (7)	C4—N—B	110.97 (8)
C3—C4—H4A	115.0 (7)	C1—N—B	110.02 (8)
NC4H4B	108.0 (7)	C4—N—Si	112.67 (7)
C3—C4—H4B	109.2 (7)	C1—N—Si	112.16 (7)
H4A—C4—H4B	111.7 (9)	B—N—Si	108.77 (7)
Si—C5—H5A	111.9 (8)	N—Si—C7	108.42 (6)
Si—C5—H5B	110.3 (8)	N—Si—C5	108.43 (5)
H5A—C5—H5B	109.2 (11)	C7—Si—C5	113.07 (7)
Si—C5—H5C	108.0 (8)	N—Si—C6	108.71 (6)
H5A—C5—H5C	107.2 (11)	C7—Si—C6	108.96 (6)
H5B—C5—H5C	110.2 (11)	C5—Si—C6	109.17 (6)
N	20.37 (11)	C4—N—Si—C7	-167.46 (7)
C1—C2—C3—C4	4.88 (11)	C1—N—Si—C7	-52.87 (9)
C2—C3—C4—N	-28.50 (11)	B—N—Si—C7	69.06 (8)
C3—C4—N—C1	41.07 (11)	C4—N—Si—C5	69.43 (9)
C3—C4—N—B	-76.15 (10)	C1—N—Si—C5	-175.98 (7)
C3—C4—N—Si	161.60 (7)	B—N—Si—C5	-54.05 (8)
C2-C1-N-C4	-37.80 (11)	C4—N—Si—C6	-49.15 (9)
C2—C1—N—B	80.10 (10)	C1—N—Si—C6	65.44 (8)
C2—C1—N—Si	-158.69 (7)	B—N—Si—C6	-172.63 (7)

